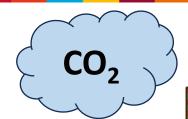
The Secret of How Cacti Absorb Carbon Dioxide: "An Easy Way to Help the Environment!"

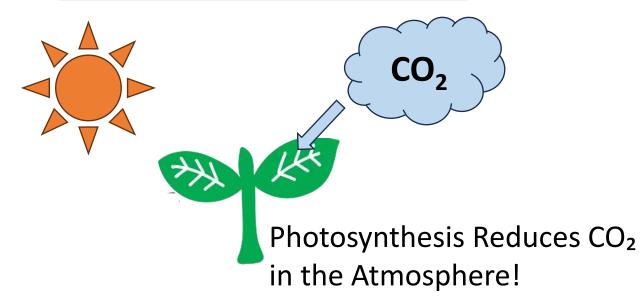
Chiba Prefectural Kisarazu High School Yuzuki Miyazawa, Ami Nakagawa, Kokone Mineo, Ayumu Kawaguchi, and Kazushi Kutsuki

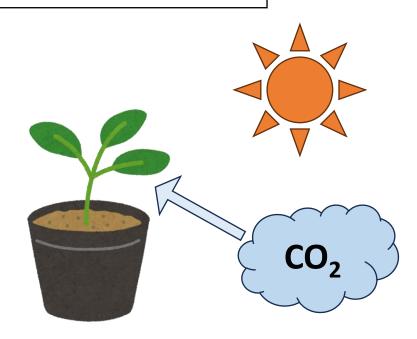
SDGs and Goals



Research Background

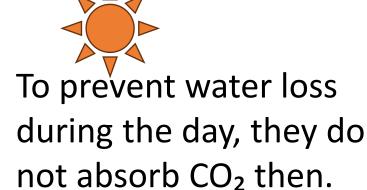
Climate Change

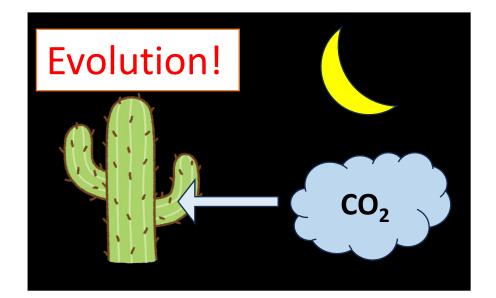

Main Causes



Focus on Plant Photosynthesis!

Evolution of Photosynthesis


Ordinary Plants (C3 and C4 Plants)



They perform photosynthesis and absorb CO₂ during the day. They do not absorb CO₂ at night.

CAM Plants
(Plants in Harsh Environments)

Research Purpose

The more light cacti receive during the day, the more they can prepare to absorb CO₂ at night.

Find out "the most effective way for cacti to absorb carbon dioxide"!

Discover an easy and practical solution to environmental problems!

Method: Difference in CO₂ Absorption

Expose to sunlight for 3 hours

Expose to sunlight for 6 hours

Results

Expectation: 6 hours of sunlight would result in higher CO₂ absorption.

	3 hours	6 hours
First	Day : 518 ppm → 522 ppm	Day : 413 ppm — no change
Trial	Night: 1574 ppm — no change	Night: 1425 ppm → 1459 ppm
Second	Day : 535 ppm → 590 ppm	Day : 705 ppm → 715 ppm
Trial	Night: 413 ppm — no change	Night: 413 ppm — no change

The experiment did not go well.

- Location after sunlight exposure
- Insufficient duration of sunlight exposure

Future Plans

Learn from the reflections of this experiment and revise the conditions.

Quantitatively evaluate the relationship between sunlight duration and CO₂ absorption.

Determine the conditions under which cacti can absorb CO₂ most efficiently.

Contribute to CO₂ reduction in Kisarazu City using cacti!

Reflections on the Research Activity

Kokone Mineo

Cacti absorb CO₂ at night and are easy to grow, making them a simple way to help combat global warming. By analyzing why the experiment didn't go as planned, we can improve future experiments. We will continue caring for the cacti and use them to contribute to environmental solutions.

Through this activity, I actively considered how our actions can help protect the environment. I realized that even familiar plants can contribute to combating global warming, and I felt happy to participate in small but meaningful environmental efforts. I want to continue exploring environmental solutions from different perspectives and not treat these issues as someone else's problem.

Yuzuki Miyazawa

Ami Nakagawa

Through this activity, I was able to deeply consider what individuals can do to address environmental issues. It was a valuable experience to explore ways a high school student like me can contribute. I also realized that reducing CO₂ is not only about cutting emissions but also about increasing absorption, which broadened my perspective.